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Summary.-Experiments are described which provide evidence that a certain
fraction of the ,3-galactosidase molecules of the cell are carried on the ribosomes.
This fraction corresponds (in order of magnitude) to one molecule per cell in non-
induced, inducible cells and rises to between 10 and 20 per cell for the fully induced
and constitutive states. In addition to possessing an apparent higher sedimentation
coefficient, the ribosome-bound enzyme molecules are distinguishable from their
soluble counterparts in their response to specific anti-,3-galactosidase serum. Anti-
serum precipitates the soluble enzyme without affecting the observed activity.
Exposure of the ribosome-bound enzyme to antiserum results in a three- to sixfold
rise in activity which is not accompanied by the formation of a precipitable aggre-
gate. It was found that the complex can, however, be precipitated by the addition
of an antiserum (chick anti-rabbit) directed against the antibody. The latter
reaction suggests a means for the isolation of specific ribosomes.
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ON THE BOUND STATES OF A GIVEN POTENTIAL*
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It is a fundamental property of any spherically symmetrical potential V(r)
for which fvddr rl V(r) exists that there are only a finite number of bound states.
This has been expressed by V. Bargmann' in the form of the inequality2

(21 + 1)nl < fc dr rIV(r)I
where nl is the number of bound states for given I (and magnetic quantum number
mI). The method of derivation of the latter result is sufficiently specialized, how-
ever. that it is not easily applied to nonspherically-symmetrical potentials. for
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example, or to the tensor forces that appear in the two-nucleon problem. Ac-
cordingly, we propose to give another derivation of this inequality, together with
some of its extensions.
Any discussion of this subject has as its foundation the elementary fact that a

decrease of the potential in some region must lower the energies of the bound states
and therefore cannot lessen their number. Thus, we conclude that

ni(V) < nl(-fV )

since the substitution of -I V(r) for V(r) can either leave the potential unchanged
or decrease it. Next, let us replace -IV(r)I by - XIV(r)I with 0 < X < 1. An
increase of X lowers the energies of the bound states and cannot lessen their number.
As X increases from 0, we reach a critical value, Xi, at which a bound state first
appears at E = -0. With further growth of X, the energy of this state decreases
until we reach a second critical value, X2, at which a second bound state appears,
and so on. When X has attained the value unity and

Xn < 1 < Xn + 1

there are n bound states.
The eigenvalue problem for X, associated with E = 0 and orbital angular momen-

tum 1, is given by

d2 l( + 1)\(_ dr + ) ul(r) = XIV(r)lul(r)
or, on incorporating the boundary conditions,

Ul(r) = XfJOdr' gl (r, r')iV(r')luz(r').
The Green's function, gztr, r'), obeys

d2 1( + 1)
dr2 + ) gI(r, r') = (r - r')

and is explicitly given by

gl(r, r') = +1r <I+ r> to21+ 1<
The integral equation can also be written with a real, symmetrical kernel,

X.-101(r) = J' dr'KI(r, r')41(r'),
where

K1(r, r') - V(r)gl/2g(r, r')IV(r')"1/'
and

XI(r) = IV(r)|1/ u1(r).
Thus, the eigenvalues of the Hermitian, positive kernel K, are the reciprocals of
the critical numbers Xi, X2, ... just described.
The trace of K5 is the sum of the eigenvalues,
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all f=J drKI(r, r) = 21 + 1 f Vrr!v(r)L
But, if there are n bound states, Xi < X2 . . . < Xn < 1, while 0 < XAl < a, which
supplies the inequality

z- > z- >
1 Xa 1 Xa

and the theorem

nj(V) < (-IVj) < 2 1 f dr r V(r)I

When the potential is positive over an appreciable range of r, the upper limit
given by this theorem may not be very realistic. Then, one would do better to
compare V(r) with a potential that equals V(r) where V(r) < 0 but is zero
wherever V(r) > 0. The same considerations show that

nl(V) < 1 fdr rl V(r)I] v<o,

and now the integration is extended only over the regions of negative V(r). This
form of the inequality requires no restriction on the behavior of V(r) in the domain
of positive values.
A potential that realizes the upper limit to n1 as closely as one wishes, for any

particular 1, is given by
U

V(r) = - E V,5(r-r.), V, >O.
P= 1

The eigenvalue problem is equivalent to the n-dimensional determinantal equation

det[X-16,,, - Vl/2gI(r, r) Vl/2I - 0.

and there are just n eigenvalues. We can now choose each of the ratios rA + 1/r,, to
be sufficiently large that the nondiagonal elements of the determinant are as small
as desired. Furthermore, we make all the diagonal elements equal by requiring
of every V, that

Vg1(r,, r>) - 21 + 1 V 1

and in this way attain, with arbitrary precision, a single n-fold degenerate eigen-
value at unity. The resulting situation is one with n bound states of essentially
zero binding energy and with EXa. - no
The number of bound states is the number of states that lie at or below zero

energy, and a similar problem can be posed for any negative energy, - K2. All the
previous arguments continue to apply, provided one replaces the Green's function
with the one defined by

( dr2+ ( + 1)\
+ K2 + 2 , gl(r, r', K) = -



VOL. 47, 1961 PHYSICS: J. SCHWINGER 125

The required function is

gl(r, r', K) = - S(Kr<)EI(Kr>)
K

where
SI(x) = i- x j(ix)

El(x) = -i x h(ix)

in the notation of spherical Bessel functions. Thus,

n1(E. - K2) < fdx drgI(rrK)JV(r)l = f;o dr rIV(r)I(1/Kr)SZ(Kr)EL(Kr),

and - So(x) Eo(x) =-[1- e ]
x 2x

!JSi(x) Ei(x) = - 2 +e2X(1 +-)2]

for example. Here again, and in the following, integrations only over the regions
of negative V can be used.
The function g1(rrK), and thereby the integral fJ drgi(rrK) V(r) I, has two char-

acteristics that are physically necessary as properties of the number of states
with any specified 1 below the energy-K2. It is a monotonically decreasing func-
tion of K and of 1. On regarding 1 together with K as continuous parameters, we
deduce from the Green's function differential equation that for any infinitesimal
increase of K or 1,

6gj(rrK) = fJ' dr'[2K6K + r-2(21 + 1)51J(gj(rr'K))2 < 0.

We shall apply the monotonic dependence on K to a situation with n bound states
for a given 1, so that

f;' drgz(rro) IV(r)I > n > 1.

Then, there is a unique solution of the equation

f; drgI(rrKi)IV(r)l = 1,

and n1(E < -K12) < 1,

which is to say that the lowest bound state, the ground state for the given 1, lies
above the energy -K12, or

E1 > K12.

The deepest of these ground states is the one for 1 = 0, and a lower limit to the
ground state energy is obtained by solving the equation

fr; dr(l- e-2c1r)V(r)j = -2K.

For the class of potentials defined by fd" drIV(r)I < X, we have the crude estimate
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and E ->- (f drIV(r)I).

The potential

V(r) = -V16(r - rl), Vlrl > 1

shows that even this limit can be approached as closely as desired, by choosing
Vir1 to be sufficiently large. In a similar way, the equation

fd' drgI(rrKm)IV(r)l = m = 2, 3, ... < n

has a unique solution, and
n1(E < -K 2) <m

or Em > -Km2.

Accordingly, we have obtained lower limits to the energies of all the bound states
of a given potential.3
The transference of these ideas to an arbitrary nonspin-dependent three-dimen-

sional potential V(r) requires only one major modification. The Hermitian, positive
kernel of the integral equation

X-14(r) = f (dr')K(rr'K)4(r'),
is K(rr'K) = IV(r)Il/2G(rrIK) IV(r')I1/2
and the Green's function, which is defined by

(-V2 + K2)G(rr'K) = (r - r')

and explicitly presented as

e-Klr-r' I
G(rr'K) =41r-r1|'

implies that the kernel is singular on the diagonal. We therefore shift our attention
to the iterated kernel, the trace of which is

f (dr) (dr') (K(rr'K))2=2

and deduce for a suitable class of potentials that

1 (dr)drr)Vrr)
N(E < - K2) < - r(dr)(dr')|V(r)|2 V(r')

(47)2 r -r1
which includes an upper limit to the total number of bound states,

N < f) r (dr)(dr') r -r(')Ij2)1
(47r)2 /

The latter quantity exists for potentials that decrease more rapidly than jrj-2
as |r|-o o and that in the neighborhoods of a finite number of points ro are less
singular than Ir - ro -2. These statements are to be interpreted by such in-
equalities as
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Irl > R, IV(r)I < C~rJ a, a > 2.

A potential of this class that is spherically symmetrical about its only singularity,
at the origin, satisfies the condition ff7 dr r IV(r) < c. It should be noted that
the upper limit to N, deduced from the individual n, limits and from the fact that
no bound state can occur for 21 + 1 > Rff dr rIVI, is

N< f drriV[fidrrIvI + i].

The energy of the ground state is bounded below by

E1 > K12

where Ki is the unique solution of the equation

1 e2xilr-r'I
(4r)21 (dr) (dr )JV(r)J IJrr-r2 j V(r')J = 1,

given that 1 f (d J(dr')V(r) IV(r')J > 1
(47r)~2 r)d') r - r/12

More generally, when the last integral exceeds the integer N, the solution of the
equation

-2KmIr-r'I

(41 2 (dr)(dr')V(r) e rV(r')I = m =1,22....N
supplies a lower limit to the energy of the m'h of the N discrete states,

Em> -Km2.

There is a simple variant of these procedures that is worth mentioning. A com-
parison potential to V(r) can be defined that equals V(r) wherever V(r) < -K2
and equals- K2 in the regions for which V(r) > - K2. The energy values associ-
ated with the latter potential are depressed by the amount K2 relative to those of
the potential that equals V(r) + K2 wherever this quantity is negative but is
zero otherwise. Thus, an upper bound to the total number of states associated
with the last potential serves to limit the number of states that lie at or below
the energy- K2 for the potential V(r). The explicit statement is

N(E < K2) < (4-)2 f (dr) (dr') rV(r)+ K2 +V(r')+K21 <

and, for the states of given 1 in a spherically symmetrical potential,

nj(E < -K2) < rf dr rIV(r)+ K21
a 21 + 1 v + jX2 < 0

from which we obtain lower limits to the energies of the various states. Note that
no matter how slowly the potential approaches zero at great distances, there is a
finite upper limit to the number of states that lie at or below any energy- K2 < 0.
Of course, as K -O 0, this limit will approach infinity if the conditions for a finite
total number of states are not satisfied.
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As an important example of spin--dependent potentials we consider

V(r) = Va(r) + Vb(r)Sl2

S12 = 3 rq2 r- a1 072,
r2

which refers to a pair of particles with spin angular momenta '/20-. In the spin
singlet state, S12 = 0 and we need consider only the triplet state. for which 01* o-2 =
1. We then note the algebraic property (S12 + 1)2 = 9, so that the triplet eigen-
values of S12 are 2 and -4. Just for simplicity, we shall assume that Vb(r) is
everywhere negative, but Va(r) is not restricted in this way. The notation A > B
will be used for spin matrices to mean that A - B is a positive matrix, one that can
never realize a negative expectation value. Thus,

V(r) 2 Va(r) + 2 Vb(r),

and the spin-independent spherically symmetrical potential that equals Va +
2Vb where this quantity is negative and that equals zero otherwise provides a
comparison potential to which the preceding three-dimensional considerations can
be applied, since no classification of states is involved.
More detailed results can be obtained by considering specific states, such as the

even parity, J = 1 states, 3IS + 3D1. The wave function for energy- K2 is de-
scribed by the pair of radial functions uo(r), u2(r) that obey the coupled integral
equations

u(r) = fr' dr'g(rr'K) (-V(r')u(r')).

Here, u(r) = (uo(r)' - ( p 0")~%(r), \0 g2/

and v = (28/~~~2Va 2 -2V 2VbP
If we exhibit a matrix, V,(r), such that

V(r) 2 Vc(r)

and -V,(r) > 0,
the evident matrix generalization of the previous arguments supplies the limit

n(E) < - K2 < fdr tr [g(rrK)- V,(r)]
where the trace refers to the two-dimensional matrices.
A suitable choice is the comparison potential just described, written as a multiple

of the unit matrix, which gives
n(E < -K2) <fd'dr(go(rrK) + g2(rrK)) IVa(r) + 2Vb(r)] va + 2Vb < 0

and, in particular,

n < - f dr r|Va(r) + 2V6(r)l
5 Va + 2Vb< 0

The latter also implies the alternative bound
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n(E < -K2) < - f dr rlVa(r) + 2Vb(r) + K2 l
5 Va + 2Vb + X2 < o

A somewhat more elaborate treatment follows from the remark that the matrix
V(r) defines three regions. In region I, Va < -41 Vbj, and - V is positive definite.
Region II is characterized by 2 IIVbt > Va > -41Vjbj, and here the matrix V is
indefinite, while in region III, Va > 2jVbI and V is positive definite. For a com-
parison potential, we use V itseif in region I, the multiple Va + 2Vb of the unit
matrix in region II, and zero in region III. There results the upper bound

n(E < -K2) < fI dr[go(rrK)jVa(r)j + g2(rrK)jVa(r) - 2Vb(r)l] +
fJn dr(go(rrM) + g2(rrK)) IVa(r) + 2Vb(r)I

and

n < fidr r [lVa(r)I + 5 IVa(r) - 2Vb(r)I] +
6

dr rIVa(r) + 2Vb(r)i.

Again, an alternative limit is obtained for n(E < -K2) on replacing Va(r) with
Va(r) + K2 in the latter formula, with a corresponding redefinition of regions I and
II.

In an application to a physical system, such as the deuteron, for which the dis-
tribution of energy values is known, these inequalities provide simple bounds on
the potential used to represent the data.
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One day, I suppose, someone will find the clue and we shall then realize
that we have been watching the missing mechanism at work in every experi-
ment upon the brain that we did, but never recognized it for what it was.

-B. Delisle Burns'

Theories of brain function abound, ranging from Aristotle's idea that it cools the
blood to our present notion that its operations make behavior possible. Theories
as to what these operations might be are not scarce either, and they extend from
Descartes' idea (in which the pineal gland was supposed to move from left to right
to permit humors to flow into one or the other of the brain ventricles) to the present-
day almost universal view assigning to neurons alone the critical role. This neuron
theory has generated much valuable information about brain function during the


